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ABSTRACT 
In [20] we introduced a new concept of a landscape: the 
information landscape. We showed that for problems of very 
small size (e.g. a 3-bit problem), it can be used to generally and 
accurately predict the performance of a GA. Based on this 
framework, in this paper we develop a method to predict GA 
hardness on realistic landscapes. We give empirical results which 
support our approach. 

Categories and Subject Descriptors 
F.2.0 [Theory of Computation]: Analysis of algorithms and 
problem complexity. 

General Terms 
Algorithms, Performance, Theory. 

Keywords 
Fitness landscape, Genetic Algorithm, Theory 

1. INTRODUCTION 
For over a decade GA researchers have attempted to predict the 
behavior of a GA in different domains. The goal is to be able to 
classify problems as hard or easy according to the performance a 
GA would be expected to have on such problems, accurately and 
without actually running the GA.  
The Building Block (BB) hypothesis [1] states that a GA tries to 
combine low, highly fit schemata. Following the BB hypothesis 
the notion of deception [1], [2] isolation [3] and multimodality 
[4] have been defined.  These were able to explain a variety of 
phenomena. Unfortunately, they didn’t succeed in giving a 
reliable measure of GA-hardness [5], [6].  
Given the connection between GAs and theoretical genetics, some 
attempts to explain the behavior of GAs were inspired by biology. 
For example, epistasis variance [7] and epistasis correlation [8] 
have been defined in order to estimate the hardness of a given real 
world problem. NK landscapes [9], [10] use the same idea 
(epistasis) in order to create an artificial, arbitrary, landscape with 
a tunable degree of difficulty. These attempts, too, didn’t succeed 
in giving a full explanation of the behavior of a GA [6], [11], 
[12].  

Finally, fitness distance correlation [13] tries to measure the 
intrinsic hardness of a landscape, independently of the search 
algorithm. Despite good success, fitness distance correlation is not 
able to predict performance in some scenarios [14]. 
The partial success of these approaches is not surprising. Several 
difficulties present themselves when developing a general theory 
that explains the behavior of a GA and is able to predict how it 
will perform on different problems.  
A GA is actually a family of different algorithms. Given a 
problem, the GA designer first decides which representation (e.g. 
binary, multiary, permutation or real numbers) to use, then how to 
map the solution space into the search space, and finally which 
operator(s) (mutation, crossover) to use. Moreover, there are 
limited concrete guidelines on how to choose a representation and 
a genotype-phenotype mapping. Indeed this is a very difficult 
task. Different genotype-phenotype representations can 
completely change the difficulty of a problem [15]. There have 
been attempts to evolve the right representation [16] and there are 
some general design guidelines [15], [17], [18]. However, the 
reality is that the responsibility of coming up with good 
ingredients for a GA is still entirely on the GA designer.  
In the absence of a good, predictive theory of GA performance, 
unavoidably we are only left with an experimental approach. The 
idea is to divide the space of real-world problems into GA hard 
and GA easy by experimentation. This, however, first requires 
finding a good GA (with its representation, mapping, and 
operators) for every specific instance (or class of instances) of a 
problem. 
The information landscape framework was introduced in [20] as 
an alternative interpretation to the concept landscape. In particular 
this allows defining a simple measure of distance between 
landscapes. In this paper we suggest to use this notion as a 
predictive measure to problem difficulty. The bigger the distance 
between a landscape and an “optimal” landscape the harder to 
search the landscape will be. 
The paper has the following structure. We start by giving an 
overview of the information landscape perspective. This is 
followed by a theoretical motivation of a new measure of problem 
difficulty. We conclude with empirical results and a discussion. 

2. Background 
In [20] we proposed a redefinition of the concept of landscape 
that makes the quantity and quality of the information available to 
guide a search algorithm explicit.  This is why the new landscape 
was called an information landscape. 
The performance of any search algorithm on any particular 
information landscape can be approximated. In order to do so, we 
introduced the notion of performance landscape, which was then 
used to predict the performance of a GA over landscapes of a very 
small size (all 3-bit problems).  
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Since the work in [20] is the starting point for this paper, in the 
next sub-sections we define the notions of information and 
performance landscape and discuss interpretations of the two 
concepts. 

2.1 Information Landscapes 
An information landscape is a triple (X, χ , t) including: 1) a set 
of configurations X, 2) a notion χ of neighborhood, nearness, 
distance or accessibility on X, and 3) a stochastic information 
function : [0,1]t X X× → . 

For every pair ( , )i jx x of elements in X, t gives the probability that 

ix is superior to jx . The value of the function t can be viewed as 

the outcome of a stochastic tournament selection with tournament 
size two. Naturally, the function t can be represented as an 
| | | |X X× information matrix M  with entries , ( , )i j i jm t x x= . 

Note that when X is implied we can use the term information 
landscape to denote M without ambiguity.  
The notion of information landscape does not require the 
availability of a fitness function. However, when a fitness function 
f is available, we should normally assume:  

 1 ( ) ( )
( , ) 0.5 ( ) ( )

0

i j

i j i j

if f x f x
t x x if f x f x

otherwise

>
= =



 (1) 

If the fitness function is noisy, t can take values other than 0, 0.5 
and 1. Given the information landscape we can construct the 
following rank-based fitness function: 
 

,( )rank k j
j

f k m=∑  (2) 

Note that not all information landscapes can be associated to a 
fitness function (the information matrix may not induce a partial 
order). We will call invalid those information landscapes that 
cannot be derived from a corresponding fitness landscape.  
Figure 1 gives an example of a fitness function, a landscape 
defined over a real neighborhood structure and the matrix which 
represents our information landscape for a bit-string 
configuration space.  

Gene Fitness Gene 000 001 010 011 100 101 110 111

000 6 000 1 1 1 1 1 1 0

001 5 001 0 0.5 1 1 1 1 0

010 5 010 0 0.5 1 1 1 1 0

011 3 011 0 0 0 1 1 1 0

100 2 100 0 0 0 0 1 0.5 0

101 1 101 0 0 0 0 0 0 0

110 2 110 0 0 0 0 0.5 1 0

111 7 111 1 1 1 1 1 1 1
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Figure 1. Three ways of representing the information given to 
a search algorithm: a) a fitness function (represented as a 
vector) b) a graph, representing topological properties (fitness 
landscape) and c) a matrix representing the outcome of all 
possible comparisons (information landscape).  

Since ( , ) 1 ( , )i j j it x x t x x= − the matrix (figure 1) presents 

symmetries with respect to the diagonal; the gray area marks the 
independent elements of the information landscape. Diagonal 
elements (omitted for clarity) are all 0.5. Moreover, we exclude 
the entries related to the optimum. We assume that we have a way 
to identify it, hence once it is found, the search is over.  
In order to account for all this in a simple way we use a vector to 
store the relevant entries in the matrix: 

              1 2 1,2 1,3 1,( , ,..., ) ( , ,..., )n X XV v v v m m m −= =  

where ( 1)( 2) / 2V n X X≡ = − − . 

This definition of a landscape allows us to easily define the 
distance between two landscapes. Let aV , bV  be two information 
landscapes, the distance between them is defined as: 
 1( , )

i ia b a bd V V v v
n

= −∑  (3) 

In addition we are in a position to quantify the amount of 
information present in a landscape. The degree d0.5 of the 
information landscape is the degree to which the information in 
the matrix available to an algorithm is different from 0.5. 
Formally, it is the distance between a landscape and the landscape 
where all matrix elements are 0.5 normalized to the range [0,1]:  
 0.5 2( ) 0.5id V v

n
= −∑  (4) 

2.2 Performance Landscapes 
Let :P V → ℜ  be a performance measure over the landscape. 
For example, P could be the number of fitness evaluations 
required to find the global optimum. 
P is a complicated function of n variables for which we have no 
explicit formulation. However, this function can be estimated 
using machine learning techniques.1 As an approximation for P, in 
[20] we adopted an n-variate linear function of the form 

 0( ) ( 0.5)i iP V c c v≅ + −∑  (5) 

and we used multivariate linear regression to estimate the 
coefficients. We then defined the array ( )iC c=  as the 
performance landscape. 
In [20] we indicated how, for a given performance landscape C 
and a degree of information 0d , we should expect our algorithm to 
provide best performance on the following information landscape: 

 ( )0.5
max max 0arg max [ ( 0.5)] ( )

iv i iV c v d V d= − =  (6) 

2.3 Interpretation  
It is important to understand how an entry vi in the information 
landscape and the corresponding coefficient ci in the performance 
landscape are related to the performance of an algorithm. (See 
Fig. 2.) 

                                                                 
1 The training set includes examples of the form (V,P), V being an 

information landscape and P being an estimate of P(V) obtained 
by running an algorithm on V and measuring performance. 

(a) 

(b)

(c)
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The assumption underlying most optimization algorithms is that 
applying the search operators to solutions with high fitness (as 
opposed to ones with low fitness) is more likely to yield solutions 
close to the optimum (we only consider optimizations problems). 
In [20], we termed the chance of finding the optimum by applying 
the search operators on a point as the effective distance of that 
point from the optimum. For example, in the case of a GA, given 
a particular population, the effective distance of a string from the 
optimum would be the probability that given that this string is 
selected into the mating pool, the optimum will be found during 
the run. The effective distance is only a function of the search 
operators and the neighborhood structure. 
The fitness of a solution is not related to the effective distance of 
the solution from the optimum. However, the algorithm uses the 
fitness of the solution as an indicator for such a distance. The 
performance of the algorithm depends on the correlation between 
the relative fitness (i.e. the information given by the fitness 
function) and the effective distance from the optimum 
An entry in the information landscape represents therefore the 
assumed relative effective closeness to the optimum (i.e. if mi,j=1 
solution “i” is closer to the optimum than solution “j”). Each 
element of the performance landscape, on the other hand, 
represents the degree to which the effective distance of one 
solution is closer to the optimum than another. In other words, the 
information landscape states which solution should be assumed to 
be better whereas the performance landscape states whether 
indeed and by how much a solution is better than another for the 
purpose of eventually solving a problem. 

 

Gene 000 001 010 011 100 101 110 111

000 1 1 1 1 1 1 0

001 0.5 1 1 1 1 0

010 1 1 1 1 0

011 1 1 1 0

100 1 0.5 0

101 0 0

110 0

111 1 1 1 1 1 1 1

Gene 000 001 010 011 100 101 110 111

000 12 23 2 45 0 0 0

001 0 1 6 9 0 0

010 34 7 88 34 0

011 3 54 1 0

100 8 0.5 0

101 6 0

110 0

111 1 1 1 1 1 1 1

Information landscape

Performance landscape

 
Figure 2. Relation between the information landscape and the 
performance landscape. High values in the performance 
landscape indicate that the corresponding entries in the 
information landscape are important.  

3. Doing without the performance landscape 
In section 2 we introduced our information landscape framework 
and reviewed the main results of [20], arguing that the 
performance of the algorithm can approximately be represented by 
a performance landscape (see [20] for empirical results strongly 
corroborating this). However, calculating a performance 
landscape is a computationally expensive process. This prevents 
the estimation of performance landscapes for realistic problems.  
In this paper we want to remove this obstacle and show that the 
information landscape alone can be used as an estimator to GA 
hardness. In particular, in this section we will show that the 
distance between a landscape and a suitably defined “optimal” 
landscape is a good indicator of problem hardness. 

Our argument is simple. The entries of the information landscape 
represent assumptions about the relative effective closeness of 
solutions to the optimum. Naturally, we should expect the 
performance of an algorithm to depend on the number of such 
assumptions that turn out to be correct. 
In this respect the optimal information landscape is one where all 
assumptions are correct. Under the linear approximation in 
Equation (6), such a landscape, which we will call Vmax, would be 
the one given in Equation (7). However, for our purposes Vmax 
could also be determined (or, more likely, approximated) 
empirically. Once Vmax is available, then the distance between Vmax 
and a given landscape V is proportional to the number of wrong 
assumptions in such a landscape. So, d(V,Vmax) can be used as an 
indicator to problem difficulty.    
This measure of hardness is not exact because different entries in 
the performance landscape may have different values, i.e. some 
assumptions are more important than others.  However, the error 
is bounded. In order to show this we rewrite the performance as a 
function of the distance of a landscape from the optimal landscape 
and a (bounded) quantity which depends on the elements where 
the two landscapes differ.   

Lemma 1:  Let Vmax be the optimal information landscape and 'V  
any arbitrary landscape of degree ( ') 1d V = . Then: 

 max ' '( ') ( ) ( )V VP V P V n d c≅ −  (7) 

where: 

' m ax( , ') ,   ' ,Vd d V V n V= =

max

' '
: ''

1 | | ,  min( ) max( )
ii

V i i V i
i v vv

c c C c C
nd ≠

= ≤ ≤∑
 

Proof: Using Equation (5) we obtain 

{ }

max max

', max

max max max

max max

1 max max

max 1 1

( ) ( ') ( ' )

, ( ' ) 0

( ' ) | ( ' ) | | || ' |

( ' ) | || ' |

Let  | | '  since | ' | {0,1}

| || ' |  but

i

i

i i i

i i

i i i

i i i

i i

V i i i

i i i i i i

i i i i

i i i

i i

P V P V c v v

c v v

c v v c v v c v v

c v v c v v

C c v v v v

c v v C C

− ≅ −

∀ − >

⇒ − = − = −

⇒ − = −

≡ ≠ − ∈

− =

∑

∑ ∑

∑ 1 ' 1 '

max ' '

| |   and  therefore,

( ') ( ) ( )
i iV V

V V

C nd C c

P V P V n d c

= =

≅ −

 

 

Theorem 1:  For two random information landscapes V1, V2 of 
degree d0.5(V1)=d0.5(V2)=1 and such that 
d1=d(Vmax,V1)<d(Vmax,V1)=d2 for any two pre-fixed d1 and d2 the 
following holds 

1 2 2 1[ ( ) ( )] ( )E P V P V d d− ∝ −  

Proof: From Lemma 1 we obtain:  

2 2 1 11 2( ) ( ) ( )V V V VP V P V n d c d c− ≅ − . Since V1, V2 are random 

landscapes, the averages 
2 1
,V Vc c are random variables representing 

sample means of Ci. So, they are unbiased estimators of the true 
mean [ ]iE Cµ = . Therefore: 

2 11 2[ ( ) ( )] ( )V VE P V P V n d dµ− ≅ −  
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An obvious consequence of this is the following 

Corollary 1: For any two landscapes V1, V2 with degree of 
information 1  

2 11 2( ) ( ) V VP V P V d d> ⇔ >  

These two results allow us to compare the performance of an 
optimisation algorithm on any given information landscapes of 
degree 1 without the need to know the performance landscape.  
We can apply a simple heuristic in order to extend these results to 
landscapes of degree smaller than 1.  
Let vk be an entry in the information landscape with a value of 0.5. 
Let maxk

v  the corresponding entry in the optimal landscape. 

From the algorithm’s perspective, a 0.5 probability means that the 
algorithm will behave (for one time step) either as if vk = 1 or as if 
vk = 0 with equal probability. That is, vk has the same probability 
to be equal or not equal to maxk

v . So, over multiple time steps, vk 

will some time drive the search towards the optimum, some times 
away from the optimum. However, we argue that the performance 
of the algorithm when vk=0.5 will be in between the performance 
obtained when vk is constantly equal to maxk

v and the performance 

obtained when vk is constantly equal to 1-
maxk

v .  

In summary we should expect 
1 2 2 1[ ( ) ( )] ( )E P V P V d d− ∝ −  even for 

landscapes of degree smaller than 1. 

4. Evaluating hardness   
In the previous section we argued that the hardness of a problem 
can be estimated using the distance of its information landscape 
from the optimal landscape. However, in general the optimal 
landscape is not known. Naturally, instead of using the actual 
optimal landscape, we could use an approximation, but which 
one? We know from many empirical studies that unimodal 
problems tend to be GA easy, the onemax problem being a 
glowing example. Indeed, in [21] we were able to predict an 
optimal landscape according to our framework, and that landscape 
was unimodal.   So, in this work we decided to use a unimodal 
landscape as an approximation of the optimal landscape. 
The information landscape and the performance function are 
defined for a fixed target solution. If we change the target solution 
the same information landscape can change from being easy to 
being difficult (e.g. consider the information landscape induced 
by the onemax function where we change the optimum to being 
the string 00…0). So, the distance between landscapes must be 
computed for landscapes with the same global optimum. This 
requires knowing a priori the global optimum.  
Given the global optimum, we measured the distance between a 
unimodal landscape and the actual landscape induced by the 
problem. In all our experiments we calculated the exact distance 
between the two landscapes. We used a simple GA with uniform 
crossover used with 100% probability and mutation applied with 
10% probability. The size of the landscape was 14 bits. We used a 
population size of 20. The first generation in which the optimum 
was found was used as the performance measure. The results are 
the average of 100 runs.  
This section is divided to four subsections. In the first, we 
consider examples in the literature for which a notion of 

information was implicitly studied. In section 4.2 empirical results 
are given for various problems. In section 4.3 we test our 
approach on three counterexamples for other measures of problem 
difficulty.  Section 4.4 suggests a way in which our measure can 
be further improved. 

4.1 Information in previous literature  
There are various examples in the literature that are related, 
implicitly, to the notion of information. In particular, there are 
examples of problems with no information (NIAH), problems 
with abundant and reliable information (onemax) and problems 
with abundant but unreliable information (deceptive problems).  
The onemax and fully-deceptive problems were studied in [21] 
where, using the information landscape perspective, we showed 
that one problem can be seen as the opposite of the other. In 
particular, the landscape induced by onemax is the negation2 of 
the landscape induced by a fully-deceptive problem of the same 
size.  
One of the aspects studied in the royal-road problems is the size 
of the lowest order building blocks, which can vary from 1 
(onemax) to n (NIAH). So, this parameter is effectively related to 
our degree of information.  
Finally, our framework suggests that the difficulty of a problem 
depends on the amount of reliable (non-deceptive) information in 
the landscape. The information landscape resulting for a mixture 
of problems, from this point of view, will contain a mixture of the 
(reliable and unreliable) information originally in the two 
problems. So, a mixture of an easy problem with a difficult one 
should produce an intermediate difficulty. The same observation 
was made in [11],[22]. Naudts and Kallel [11] studied a deceptive 
mixture of onemax and zeromax and a mixture of onemax and 
nearest-neighbor interaction functions. In [22] Clergue and 
Collard constructed hard functions for GA by combining two 
types of misleading functions.  
These examples show that the study of different aspects of 
information is not new. The main contribution of our framework 
is the ability to consider information explicitly.  

4.2 Results 
In this subsection we estimate the hardness of problems with no 
information (NIAH), random information (random problems), 
maximally reliable information (unimodal) and maximally 
unreliable information (deception). Furthermore, we study 
problems with a variable level of difficulty: the NK landscapes 
[10] with k=1…10, multimodal landscapes with a varying number 
of local maxima (1-20) and trap functions. Finally, to test our 
measure of difficulty on landscapes which were not induced by 
artificial problems, we also considered the performance of 12 
random MAXSAT problems. For each problem, we consider only 
one global optimum. If a problem has more than one global 
optimum, we choose one at random to be the target solution. 
Figure 3 plots the actual performance for our test problems. For 
easier visualization landscapes were ordered on the basis of their 
predicted difficulty (from easiest to hardest). The correlation 
coefficient between observed and predicted difficulty is 0.82.  

                                                                 
2 The negation of a landscape V is the landscape 1V V= − . I.e., the 

looser of a tournament in a landscape is the winner in the other. 
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Table 1 gives our (predicted) measure of difficulty by problem, 
showing that our measure fully matches results obtained in 
previous research. In particular, multimodality is not a good 
indicator to problem difficulty. For example, a landscape with 3 
local maxima has the same expected difficulty as a landscape with 
7 local maxima. Moreover, a landscape with 15 local maxima is 
more difficult than a landscape with 18.  
The table confirms that NK model is not appropriate for the study 
of problem difficulty because problems with a k>2 are already too 
difficult [6]. Indeed, our measure suggests that the difficulty of 
such landscapes is close to random. 
Different instances of the same problem might have different 
degrees of difficulty in the black-box scenario [6]. The predicted 
difficulty for different instances of the MAXSAT problems varies 
from 0.2 (easy) to 0.45 (difficult). 
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Figure 3 The performance of a GA vs. the predicted difficulty 
as measured by the distance from a unimodal landscape. 

 
Table 1 Estimated hardness of our test problems. 

Distance Problem 
0 MM1 
0.20-0.30 MM2,MAXSAT 
0.30-0.35 MAXSAT,NK1 
0.35-0.40 MM3, MM7,MM5,MAXSAT,NK2 

0.40-0.45 
MM14,MM18,NK3, 
NK4,Needle,MAXSAT 

0.45-0.50 MM17,MM13,NK5-9,RAND 
0.50-0.60 MM15,RAND 
0.60-0.70 TRAP4 
0.70-0.80 TRAP3 
0.80-1 TRAP2,TRAP1 

 

4.3 Hardness of known counterexamples for 
other predictive measures 
In the previous subsection we showed that for a broad family of 
problems, our method predicts accurately the problem difficulty. 
In this subsection we test our framework on three problems where 
other measures of difficulty have been shown to fail. 

As we mentioned above Naudts and Kallel [11] constructed an 
easy problem consisting of a deceptive mixture of one-max and 
zero-max, where both the fitness distance correlation measure and 
the sitewise optimization measure (a generalization for the FDC 
and epistasis suggested in the same paper) failed to correctly 
predict performance. Moreover, the higher the mixture coefficient 
the harder the problem, yet none of the predicting measures 
predicted this. We repeated the experiment3 with the control 
parameter n varying from 1 (easy) to 9 (hard). The correlation 
between the predicted difficulty and the actual performance was 
0.75.  So, we were largely able to capture the difference in 
performance as the parameter n varied. (The correlation 
coefficient of the results obtained in this and the previous 
subsection was 0.72.) 
Jansen [6] showed that the fitness distance correlation of the ridge 
function is very small. Yet, this is quite an easy problem for a hill 
climber. The distance of the ridge function to the optimal 
landscape is 0.84, which indicates a very difficult problem. Indeed 
the GA was not able to find the solution in 100 generations. A 
problem that is easy for a hill climber is not necessarily easy for a 
recombinative GA. Our measure of difficulty is specific to the 
algorithm being used. However, we suspect that for a local search, 
such as a hill climber, a first order approximation of the 
performance will not necessarily be sufficient in order to capture 
the problem difficulty. (See discussion section for further details.) 
Jansen [6] gave two counter examples to the bit-wise epistasis 
measure of difficulty. The first one was the NIAH which we 
already discussed extensively before. The second was the leading 
one function. The distance of the leading one function from the 
optimum is 0.36, which predicts well its performance. 

4.4 Improving the prediction 
In the previous subsection the framework was tested explicitly on 
counterexamples given for other measures of difficulty. In this 
subsection we use results obtained other work to enhance the 
accuracy of our measure. 
In [21] we showed that the performance landscape can be used in 
order to analyze properties of a search algorithm. In particular we 
showed that for a GA with a uniform crossover, the values of the 
entries in the performance landscape were proportional to the 
relative distance of each solution from the global. 
Based on this knowledge we assigned a weight to each entry in 
the information landscape. The weight was equal to the relative 
distance of the two solutions from the optimum. Then we 
reassessed problem difficulty using the weighted distance between 
landscapes.  
The correlation for the first set of problems (Section 5.1) was 
improved from 0.82 to 0.86, while that of the deceptive mixture 
was improved from 0.75 to 0.78. Also, the combined overall 
correlation improved form 0.72 to 0.78.  

5. Discussion  
The most important feature of the information landscape 
framework is to view problem difficulty from the perspective of 
information. In the first section 5.1 we discuss this.  
                                                                 
3 The GA used in [11] is different from the one used here.  
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The experience of the previous unsuccessful attempts to construct 
an accurate predictive measure of difficulty suggests that we must 
state explicitly what exactly we are trying to achieve with our 
own. We do this in Section 5.2. 
Then, in Section 5.3, we turn to a discussion on the empirical 
results reported in this paper, and on what accuracy we should 
expect to observe in other problems not tested here.  
In Section 5.4, we conclude with a discussion on the possible 
implication of this work in the study of other search algorithms. 

5.1 The information landscape perspective 
In this paper a new predictive measure to GA hardness was 
introduced. It is based on the concept of information.  A problem 
can be assessed according to the quantity and quality of the 
information it has. The quality of the information is defined only 
with respect to a specific algorithm.  
The easiest problem is one that has maximum amount of reliable 
information. In this paper, we used the onemax as a reference 
which approximates such a problem. 
The difficulty of other problems was predicted according to the 
amount of reliable information they had. This amount was 
estimated as the distance from the onemax problem.  
The quantity of absolute (reliable and unreliable) information was 
not measured explicitly. However, this is implicitly considered 
when computing the distance from the optimal landscape. The 
distance of a landscape which contains no information (NIAH) is 
exactly 0.54. The extent to which the performance of an algorithm 
is good or bad depends on by how much the distance differs from 
0.5 (e.g. a distance of 0.3 indicates a landscape less random than 
one at distance 0.6 but more random than one a distance 0.9 from 
the optimum landscape). 
In section 4 we gave empirical evidence that support our notion of 
problem hardness. Easy problem were closer to the optimal 
landscape (i.e, their distance was smaller than 0.5). The distance 
of hard problem was bigger than 0.5. 

5.2 The objective 
The experience with past attempts teaches us that it is not feasible 
to give a general predictive measure of problem difficulty.   
From theoretical perspective, such a measure should assess 
hardness irrespectively of the search algorithm. However, 
different search operators induce different landscapes [23] and, 
even when considering only GAs, the variety of operators and 
parameters available makes it impossible to encompass all of them 
with a single measure of difficulty. This is why our measure of 
difficulty is defined over a specific search algorithm (i.e. specific 
operators, parameters and neighborhood structure).  
From a practical perspective, the main motivation for developing 
methods to assess problem difficulty is to be able to classify 
problems as hard or easy according to the performance a GA 
would be expected to have on such problems, accurately and 
without actually running the GA. In practice, none of the existing 
measures can accurately predict performance. Also, most of them 

                                                                 
4 In this paper we used the onemax as an approximation for the 

optimal landscape. Therefore the actual distance for NIAH was 
smaller than 0.5. 

require full knowledge of the search space and those that don’t 
give inaccurate results. Indeed, given that a predictive measure for 
a simple hill climber is by itself PSPACE-complete [6], finding a 
single, good one for GAs (which are more complicated) would 
seem unlikely. This is why some researchers have suggested 
focusing on empirical results rather than theoretical analyses. 
Even though we agree with this argument, we do not agree with 
the conclusion. Firstly, we suspect it might be easier to assess 
problem difficulty for stochastic algorithms, like GAs, than for 
deterministic ones, like a simple hill-climber. This is because the 
latter is much more sensitive to noise, and, so, predicting its 
performance based on sampling may be very difficult. 
Secondly, we believe that some of the existing metaheuristics 
might be overly complicated. The lack of a strong theoretical 
background makes it difficult to understand which operators are 
essential and which are not. We think it is important to attempt to 
construct predictive measures of problem difficulty to contribute 
towards this understanding. These may provide useful knowledge 
on the actual underlying logic of an algorithm (e.g. epistasis 
variance).  
If an accurate predictive measure is found, it will be possible to 
construct a more efficient search algorithm. An objective of this 
line of research, therefore, is to refine a search algorithm itself, 
making it more efficient, rather than just assessing the difficulty of 
a problem with respect to the search algorithm. 
From this point of view, the dependency of most of the predictive 
measures (including ours) on full knowledge of the search space is 
not a draw back.  
We believe that the information landscape perspective is an 
important step towards this direction. It explicitly defines the 
information embedded in a landscape and the relationship 
between this and the performance of an algorithm, giving the 
opportunity to study problems and search algorithms from a 
unified and radically new perspective.  

5.3 The empirical results 
The results obtained in this paper strongly support our notion of 
difficulty. In particular our measure was able to predict GA 
performance for problems where other measured had failed 
(section 4.2).  
The notion of GA easy or hard problems is certainly ill-defined 
[14]. It is not clear how to compare the performance of different 
algorithms.  
Our approach to overcome this problem was to define difficulty 
with respect to a reference point: the optimum landscape. The 
performance over a random landscape (with distance 0.5 from the 
optimum landscape) is our threshold to separate easy and difficult 
problems. The upper and lower limits for the possible 
performances are represented by the performance of the GA on 
the optimal and worst landscapes.  
We define difficulty with respect a specific algorithm. The 
performance values obtained for optimal, random and worst 
landscapes differ from algorithm to algorithm. However, we 
believe that in the future we might be able to normalize these 
reference points so that different algorithm can be compared. 
In spite of strong empirical support, we can not claim, at this 
stage, that our measure of difficulty is precise in all cases. 
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Experiments in more scenarios will be needed to assess generality 
and robustness of this measure.  

5.4 Implications for other search algorithms 
It might appear that, similarly to the fitness distance correlation, 
our predictive method attempts to predict the performance of a 
GA without considering its properties. This is not the case. 
Our method is based on the comparison between a landscape and 
a reference optimal one. That is we compare a landscape with a 
landscape which is known to be good for the specific algorithm 
under a specific representation.  
We think this is the right thing to do. The GA is a family of 
different search algorithms. Each operator or even the same 
operators with different parameters (i.e. size of population, 
mutation rate) might have different performance on the same 
landscape. Hence, we do not believe all GAs can be assessed 
accurately with the same predictive measure. Naturally, in some 
cases, if the algorithms are sufficiently close, the same predictive 
measure could be used as a good approximation. 
Our predictive measure is tailored to each algorithm. But to which 
extent is it general? In order to answer this question we have to 
consider the underlying assumption of our model.  
Firstly, we assume that all the information that the algorithm uses 
is captured in the information landscape. As stated in section 2 
this is not the case for search algorithms that use the absolute 
values of the fitness. However, by and large it is true for many 
modern algorithms and, therefore, we hope this assumption will 
not limit the applicability of our theory. 
Secondly, we assume that a first order, linear approximation is 
sufficient to describe the properties of the information landscape. 
As mentioned on section 4.3, this might not be the case for 
deterministic search algorithms such as a classical hill climber. 
This is because in such an algorithm, the interdependencies 
between the entries of the information landscape might have a 
tremendous impact on the probability to find the solution. The 
ridge function is a good example of that. However, motivated by 
the result presented in this paper and in [21], we think that a 
linear approximation works quite well for realistic stochastic 
population based algorithms. Naturally, the generality of this 
assumption needs to be validated by extending our work for 
different metaheuristics.  

6. Conclusion  
In section 3 we have shown that the information landscape 
framework predicts that the distance of a problem from the 
optimal landscape is a good indicator of its difficulty.  
This is perhaps the most intuitive and simple way of assessing 
hardness. The further a landscape is from the optimal landscape 
the worse it becomes. It might seem overly simplistic, but the 
results obtained in section 4 suggest otherwise. 
In section 5 we presented the possible contribution of the new 
approach to the research of search algorithms in general and GAs 
specifically. We considered both its potential and its limitations. 
Bridging the gap between theory and practice is becoming one of 
the main goals of current research. From this perspective many 
researchers (e.g. see [12][6]) suggest to focus more on empirical 
results for specific classes of problems rather than a general 
predictive measure. 

Our predictive measure can be viewed as being half way between 
theory and practice. We base our prediction on a good reference 
landscape. In this paper, we used a unimodal landscape, but any 
known (empirically “proven”) good landscape can be used. 
Furthermore, the local properties of a particular problem (not 
necessarily an easy one) can be studied simply by taking it as a 
reference point (see [20] for further details). In the future this may 
allow incorporating knowledge gained from empirical experience 
into a general theoretical framework. 
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